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Solutions of the Yang-Baxter equation for isotropic quantum 
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AbstAEL We mnsidcr solutions of the Yanp-Baner quation such that the logarithmic 
derivative of the transfer matrix yields a quantum spin Hamiltonian which is isotropic 
in spin space, i.e. SU(2)-invariant. Four such solutions are h w n  far eaeh value of the 
spin S. (For S = f they degenerate into the same solution, and for S = 1 they only 
give three different solutions.) For S Q 6 we show that these are the only solutions 
which are SU(2)-invariant, except for S = 3 when there is a Mth solution. 

1. Introduction 

The motivation for this paper is the following question. Which nearest neighbour, 
translation-invariant quantum spin chains which are isotropic in spin space are solv- 
able? By solvable we mean that there is a solution of the Yang-Baxter equation 
with 'difference variables' which yields the Hamiltonian of the quantum spin chain in 
the usual way. By isotropic in spin space we mean that the solution has an SU(2) 
symmetry. Letting S denote the spin of the chain, we completely answer this ques- 
tion for S < 6, i.e. we list all the solvable isotropic chains. The number of solvable 
Hamiltonians is 1 for S = $, 3 for S = 1, and 4 for < S 6 6 except for S = 3 
when the number is 5. All of the solutions in this list were previously known with the 
possible exception of the extra solution that appears at S = 3. We should emphasize 
two points. First, when we say a Hamiltonian is solvable we mean only that there 
is a solution of the Yang-Baxter equation corresponding to this Hamiltonian. Using 
this solution to actually solve the model, i.e. to compute the ground-state energy, 
gaps etc, is quite non-trivial, and we do not address this problem here. Second, spin 
chains may be solvable in a sense different from that considered here. For example 

solution of the Yang-Baxter equation in the form we consider here, even though 
there is a one-parameter family of operators that commute with the Hamiltonian [2]. 

We begin with a brief discussion of the Yang-Baxter equation and the mrrespon- 
dence between a solution and a solvable quantum spin Hamiltonian. We then review 
the four known series of isotropic solutions of the Yang-Baxter equation. For S = 3 
we present a fifth solution. For S < 6 we show (with some numerical help from 
the computer) that all the kotropic solutions have been found. Sine a solution to 
the Yang-Baxter equation is essentially determined by the associated quantum spin 
Hamiltonian, this means that for S < 6 all isotropic solutions of the Yang-Baxter 
equation are known. 
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2. The Ung-Bnxter equation 

Let R(X)  be a one-parameter family of linear operators which act on ck @ Ck. 
Consider the three-fold tensor product Ck @ C' @ Ck. Let R12(X) denote R(X) 
acting on the first two factors, i.e. R(X) @ 1 where 1 is the identity operator on C'. 
%(A) denotes R(X) acting on the second and third factors, i.e. 1 @ R(X). The 
Yang-Baxter equation [3-5) can be written as follows: 

R 1 2 ( X ) R 2 3 ( X  + p)R12(p) = R23(p)R12(X + p ) R 2 3 ( X ) .  (1) 

An equivalent form of this equation is 

R12(X)R13(X + p ) R 2 3 ( p )  = R23(p)R13(x + p)R12(X). (2) 

These two equations are equivalent in the sense that R(X) satisfies (1) if and only if 
R( A)  = ER( A)  satisfies (2 )  where E is the operator that exchanges the two factors 

To obtain a quantum spin chain Hamiltonian from an'R( A) we need the following 
in c k  @ c k .  

condition on R(X). We use the terminology of [a]. 

Definitio.. A solution R(X) is said to be regular if R(0) = 1. 

Note that if one uses the other form of the Yang-Baxter equation (equation (2)) 
then the solution R(X) is regular if and only if R(0) = E. (This is the convention 
followed in [a].) If R( A) is regular, then the logarithmic derivative of the transfer 
maahr which is constructed from R(X) in the usual way is xi where H = 
dR/dX(O) and Hi,i+l denotes H acting on sites i and i + 1 (71. This logarithmic 
derivative is the solvable quantum spin chain that goes with the solution R(X). 

A couple of trivial comments are in order. If R(X) is a regular solution of the 
Yang-Baxter equation then for any scalar function f(X) with f(0) = 1, f( X)R(X) is 
again a regular solution of the Yang-Baxter equation. The quantum spin Hamiltonian 
d a t e d  with f (X)R(X)  equals the Hamiltonian associated with R(X) plus a con- 
stant. If R(X) is a regular solution of the Yang-Baxter equation then so is R(aX)  
where a is any constant. The Hamiltonian associated with this solution is just a 
times the Hamiltonian associated with the original solution. Thus if H is solvable 
in the sense of corresponding to a solution of the Yang-Baxter equation, then so is 
aH + c for any constants a and c. When we count how many solvable Hamiltonians 
there are, we will consider all the Hamiltonians aH + e as the same Hamiltonian. 

We are interested in quantum spin chains which are isotropic in spin space. This 
means that there is an irreducible representation of SU(2) on Ck. Thus there are 
spin operators S = (S", SY, Sa) acting on C x  which obey the usual commutation 
relations, and S. S = S(S + 1) where 25 + 1 = k. We let Si denote S acting on 
the ith factor of the t e m r  prcduct. 

I" M n i t i n n  ,-.--. _. !f aq 9" c k  @ c k j  ~ p .  a y  that II & if !lii2; Si + SJ = 0: 

All isotropic operators on cCk@Ck can be written as polynomials in S, . S,. Powers 
of S, S, greater than 2s can be written as linear combinations of powers less than 
or equal to 2s. Thus an isotropic H can be written HI, = C::, h,  (SI S,)' 
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where the h,  are scalars. We are only interested in self-adjoint Hamiltonians, so we 
require the h, to be real. For k = 0,1,2, .  . . ,2S, let P(k) denote the operator on 
two sites that is the projection onto states with total spin k on the two sites. Then 
a self-adjoint, isotropic H can also be written as H = E:, c ,P(~)  for some real 
constants c k .  

3. Particular isotropic solutions of the bag-Baxter equation 

The simplest isotropic solution of the Yang-Baxter equation is just the following: 

R(X) = 1 + XE. (3) 

This solution appears in McGuire [3] and later in Yang 141. The quantum spin- 
Hamiltonian that comes from this solution is given by 

H = (4) 
i 

where interchanges the spins at sites i and i+ 1. This Hamiltonian was studied 
by Uimin [8], Lai [9] and Sutherland [lo]. 

Zamolodchikov and Zamolodchikov 1111 found a factorizable S-matrix which 
has O(N) symmetry. Their S-matrix may be rewritten as an isotropic, i.e. SU(2)- 
invariant, solution of the Yang-Baxter equation 

R(X) = l+X{l+[S+~-(- l )  ” ] E-(-1)2S(2S+l)P(0)}+X’ [S+i-(-l)*s] E .  
(5) 

(Recall that P$+, denotes the projection onto states whose restriction to sites i and 
i + 1 has total spin zero.) The quantum spin Hamiltonian corresponding to this 
solution of the Yang-Baxter equation is found by computing R‘(0). It is 

H = E( [S + $ - (-1)2s]Ei,i+l - (-1)”(2S+ l)Pi$\l] . (6) 
i 

We have dropped the trivial constant term. 
Since the equivalence of the above solution and the factorizable S-matrix of [ll] 

may not be transparent, we brietly show how one may v e m  directly that (5) is a 
solution of the Yang-Baxter equation. In the usual convention of S’ eigenstates we 
let U , k )  denote the state on two sites with S” = j on the left site and S’ = k 
on the right site. (Here j, k, 1 = S, S - 1, S - 2 , .  . . ,2,1,0 if 2 s  is even and 
j, k, 1 = S, S - 1, S - 2 , .  . . , ;, f if 2.9 is odd.) The only non-zero matrix elements 
of P(O) are given by 

( k , - k I  P(0) I 1 , - 1 )  = (-1)l-k/(2s+l). 
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Using this equation and letting U = (25 + l)P(O), one can veriry the following 
relations: 

U2 = ( 2 S t  1)U 

EU = U E  = (-1)"U 

u12E23u12 = '12 

E,,U23U,, = (-1)" E23u12 

U12u23E12 = (-1)2su12E23 

u12u23u12 = '12 ' 

These relations and a lot of tedious algebra verify that (5) is a solution of the Yang- 
Baxter equation. 

Another isotropic solution of the Yang-Baxter equation was found by Kulish er al 
[12]. Multiplyimg their solution by a scalar function, it can be written as 

Up to constants that do not matter, the solvable quantum spin-Hamiltonian corre- 
sponding to this solution is 

This Hamiltonian was studied by Babudjian [13] and W a t a j a n  [14]. 

One of these models yields the following isotropic quantum spin Hamiltonian: 
Schultz [U] and Perk and Schultz [16] found several families of solvable models. 

H = P/,:il . (10) 
i 

(The solvablility of this model for S = 1 goes back to Stroganov [17].) This Hamilto- 
nian was studied in [18] and later in [19-211. As observed in [18] and later in [19,20], 
one way to understand the solvability of this model is that it yields a representation 
of the Temperley-Lieb algebra [22]. The relations defining this algebra are 

uti+, = fiui,i+I 

Ui,i+, Ui+l,i+Z 'i,i+1 = 'i,it1 

[ U ' . .  1.1t1, U . .  1 , J t 1  ] = O  if I i - j l > l .  

If we let Ui,i+l = (2S+l)P$)+,, then the Ui,++] are a representation of this algebra. 
Any representation of the Temperley-Lieb algebra yields a solution of the Yang- 

Baxter equation in the following way [23]. If Ui,itl is an operator which acts on sites 
i and i 4- 1 and satisfies the above relations, then 

R(X) = 1 t f(X)U 
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is a solution of the Yang-Baxter equation provided f( A)  satisfies the equation 

f(X) + f(P) + & ' f ( V f ( P )  + f(X)f(P)f(X + P )  - f ( X  + P )  = 0 .  

This equation always has a solution, although the nature of the solution depends 
on whether q is greater than 4, less than 4 or equal to 4. In the case. at hand, 
q = (2S+ 1)2 and for S > 1. f (X )  = ( Q  - aex)/(ex - a,) where a is a solution of 
a + l / a  = 2 5  + 1. Thus the following is a solution of the Yang-Baxter equation for 
s 2 1: 

For S = 4 there is essentially oniy one isotropic Hamiltonian, and so all four 
series of solutions yield this Hamiltonian. When S = 1 the solutions ( 5 )  and (8) are 
the same, so there are three solutions. For S > 

When S = 3, there is a fifth solution in addition to the four solutions described 
above. It is 

the four solutions are different. ' 7 .  

R(X) = - 9 ( X +  l ) ( X - $ ) ( X + ; ) P ( o ) + 9 ( X -  l ) ( X - $ ) ( X + $ ) ( P ( l ) +  P(5)) 

- 9(X - 1 ) ( X  - $)(A - +)(P'2' -t P(4) + P(6)) 

+ 9 ( X  - 1)(X + $)(A - ; )P(3) .  (12) 

Checking that this is indeed a solution is simply a matter of computation which is 
best done with the help of a computer. Up to an overall constant, the quantum spin 
Hamiltonian that goes with this solution is 

H = (1 lP(0) * , * + I  + 7P@.) *,st1 - l7P$i1 - 1 lP$)+l - l7P$i1 + 7P$)+1 - 17P$)+1) . 
i 

(13) 

Batchelor and Kuniba have pointed out that this R-matrix appears to be the rational 
limit of the R-matrix corresponding to the Lie algebra G, which was constructed 
in [24]. 

4. Classification of isotropic solutions 

We now turn to the question of whether or not we have listed all the solvable 
isotropic, i.e. SU(2)-invariant, quantum spin Hamiltonians in the previous section. 
The Yang-Baxter equation puts severe constraints on H .  We will use a constraint 
derived by Reshetikin. We begin with a quick review of this condition, following [6] .  
The idea is to expand the Yang-Baxter equation in powers of X and p. Let R( A )  be 
a regular solution of the Yang-Baxter equation that is analytic in a neighbourhood 
of X = 0. We can write its power series in the form 
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The Ap equation implies 

= L H 2  + c 
2 

for some constant c. Using this relation the ApZ equation can be written as 

R(3) 
12 - 23 + + H239 [HI,, H23II - $H?z + kH& = 0 .  

Thus there is an operator X which acts only on two sites such that 

[H12 + H23,  H2311 = x23 - x l Z  . (14) 

This is Reshetikin's necessary condition for the existence of a solution to the Yang- 
Baxter equation corresponding to the Hamiltonian H .  

Let D be an operator that acts on three sites, and let D,, denote this operator 
acting on sites 1, 2 and 3. We want to study the equation 

D123 = x23 - ' (15) 

On dimensional grounds alone we see that for m a t  D this equation will not have 
a solution. When there is a solution, we want to know to what extent this equation 
determines X. Let tri denote the trace over the state space at site i, normalized 
so that t r i l  = 1. Let tr i j  denote the trace over the state spaces at site i and j ,  
normalized so that trijl = 1. (Note that trijA = tr,(tr,A) for any operator A.) 

L e "  1. If X is an operator on two sites which satisfies (15), then 

XI, = --tr3DlZ3 - tr,,D,,, + c l  (16) 

where c is an undetermined constant and I is the identity operator. In particular, if 
X, -XI, = 0 and trlzX,, = 0, then X = 0. 

Pmf. If X is a solution of (15) then so is X + cI for any constant c. So we can 
assume trl,XI2 = 0. Applying tr, to (15) we have 

tr2X12 = -tr23Dlz3. 

Shifting thii equation we have 

tr,X,, = -tr,D,, . 

If we now apply tr3 to (15) we obtain (16). 0 

The lemma says we can replace X, - XI, in (14) by an expression that only 
involves H. So (14) is a homogeneous equation of degree three for H. One 
can now play the following game. Consider all the H which can be written as 
H = E:=, c, H, where the H ,  are some fixed set of linearly independent operators 
on two sites and the C, are real numbers. Then the matrix equation (14) becomes 
a system of homogenous equations of degree three in the parameters c,. One can 
then try and find al l  solutions of this system of equations. Reshetikin's condition (14) 
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is a necessary one for a solution to the Yang-Baxter equation corresponding to the 
Hamiltonian to exist, but it is not known if it is sufficient. However, this is not a 
problem if for each solution of (14) one can find (or already has) a solution of the 
Yang-Baxter equation. 

Unless n is fairly small, one typically obtains a huge number of equations in a 
large number of variables. However, for isotropic Hamiltonians something special 
happens which makes these equations easy to solve. All the isotropic Hamiltonians 
for spin S are of the form 

2s 

H = 
Or=O 

where is the projection onto states whose total spin on the two sites is a. Since 
(14) is unchanged if we shift H by a multiple of the identity, we may take czs = 0 
without loss of generality. 

Let U, k ,  1 )  denote the state with Sz = j, k ,  1 on sites 1, 2, 3. We take H of the 
form (17) and consider the matrix element of (14) of the form (S,j, kl Ij+k-S, S, S )  
with k < S. Clearly ( S , j , k  I X B - X l z  I j+ k- S,S,S) = O .  So we have 

(S , j ,k l  [H~2+H23, (H121H23] l I j+k-S1S1S)=0.  

All of the operators invoked in this equation conserve the total S*. So the three 
sites always have a total S' of S + j + k.  Thus the smallest that the total S" can 
be on any two sites is j + k.  This implies that no c- with a < j + k appears 
in this equation. Thus for 1 = 2 5  - 2,2S - 3, .  . . ,2,1,0, we can f i d  equations 
that contain only cZS-,, c ~ ~ - ~ , . .  . cI. By homogeneity we can assume czs-I is either 
1 or 0. Then we can use the equations to solve for c2s-2, c2s-3, . . . successively. 
A priori this requires solving a cubic equation to find cl ,  but it turns out that the 
equation that contains only czs-l, czs-z,. . . c, is only quadratic in c I .  The number 
of equations is greater than the number of unknowns, so after solving for the ca we 
check that they satisfy the remaining equations. Most of the time they do not. We 
have carried out thii program on a computer for S up to 6. Of course every solution 
of the Yang-Baxter equation discussed in the previous section gives a solution of the 
equations for the cas. The final result of the computer calculations is that these are 
the only solutions. 

Quasi-theorem 2. For S < 6 the oniy isotropic, i.e. SU(2)-invariant, nearest- 
neighbour, self-adjoint quantum spin Hamiltonians which correspond to a regular 
solution of the Yang-Baxter equation are those discussed above. Specifically, the 
Hamiltonians are 

(i) S = 1: one Hamiltonian-(4) 
(ii) S = 1: three Hamiltonians-(4), (a), (10) 
(iii) $ < S < 6, S # 3 four Hamiltonians-(4), (6), (S), (10) 
(iv) S = 3: five Hamiltonians-(4), (6), (9), (lo), (13). 
We have described this result as a 'quasi-theorem' because of the use of the 

computer. Because of rounding errors the equations are not satisfied exactly but only 
to some high degree of accuracy. Thus it is conceivable that there is a solution that 
actually satisfies the equations, but the computer mistakenly concludes that it does 
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not because of the rounding errors. We have taken care to ensure that this does not 
happen, but we cannot claim to have truly proved the above result. 

As we noted before, if R( A )  is a regular solution of the Yang-Baxter equation, 
then for any scalar function f ( A )  with f(0) = 1, f (A)R( A )  is also a regular solution. 
The quantum spin Hamiltonian associated with a solution R(A) determines R( A )  up 
to this freedom to multiply by a scalar function. Although this fact is probably well 
known, we have been unable to find it in the literature, so we include a precise 
statement and proof. 

Theorem 3. Let R( A )  and Q( A)  be regular solutions of the Yang-Baxter equation 
which are analytic in a neighbourhood of A = 0. If R'(0) = Q'(0) then there is a 
scalar function f( A )  which is analytic in a neighbourhood of A = 0 such that 

R(A) = f(A)Q(A) 

in a neighbourhood of A = 0. 

Prmf. Let 

R(A) = R(A)/trR(A) 

8 ( A )  = Q(A)/trQ(A). 

(Since trR(0) = trQ(0) # 0, these are analytic in a neighbourhood of 0.) Clearly 
trR( A)  = trQ( A) = 1, so if we write 

m 
R(A) = A"R(") 

n=Ll 

n=0 

then we have trR(") = trQ(") = 0 for n 2 1. 
We now proceed by induction. Assume Q ( k )  = R(') for k < n. We expand 

the Yang-Baxter equation in a power series in A and p.  Consider the Ap"-' terms. 
They will only involve R(k)  with k < n. Furthermore, R(") only appears in the form 
Rg)  - RI;"). Thus by the inductive assumption 

( R G )  - QG)) - ( R i p  - @) = 0. 

Since tr( &?(") - 0'")) = 0, lemma 1 implies R(") - Q(") = 0. Thus R( A)  = Q( A), 
which proves the theorem. 0 

Combining quasi-theorem 2 with the above theorem we have the following. 

Quosi-rheorem 4. For S < 6 the only isotropic, i.e. SU(2)-invariant, regular, self- 
adjoint solutions of the Yang-Baxter equation are of the form f ( A)R( A )  where f ( A )  
is a scalar function and R( A )  is one of the solutions discussed above. Specifically, 
the only possibilities for R( A) are 
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(i) S = f :  equation (3) 
(ii) S = 1: equations (3), (S), (11) 
(iii) 
(iv) S = 3: equations (3), (S), (8), (11). (12). 

The proof of theorem 3 shows that given the quantum spin Hamiltonian one can 
explicitly compute the solution R(X) of the Yang-Baxter equation order by order 
in A. One can program a computer to carry out this calculation. If the solution is 
rational (and so equivalent to a polynomial solution), then the computer can compute 
the entire solution. 

< S < 6, S jk 3 equations (3), (S), (S), (11) 
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